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A B S T R A C T

Multilabel image classification aims to assign images to multiple possible labels. In this task, each image may
be associated with multiple labels, making it more challenging than the single-label classification problems.
For instance, convolutional neural networks (CNNs) have not met the performance requirement in utilizing
statistical dependencies between labels in this study. Additionally, data imbalance is a common problem
in machine learning that needs to be considered for multilabel medical image classification. Furthermore,
the concatenation of a CNN and a transformer suffers from the disadvantage of lacking direct interaction
and information exchange between the two models. To address these issues, we propose a novel hybrid
deep learning model called CTransCNN. This model comprises three main components in both the CNN and
transformer branches: a multilabel multihead attention enhanced feature module (MMAEF), a multibranch
residual module (MBR), and an information interaction module (IIM). The MMAEF enables the exploration
of implicit correlations between labels, the MBR facilitates model optimization, and the IIM enhances feature
transmission and increases nonlinearity between the two branches to help accomplish the multilabel medical
image classification task. We evaluated our approach using publicly available datasets, namely the ChestX-
ray11 and NIH ChestX-ray14, along with our self-constructed traditional Chinese medicine tongue dataset
(TCMTD). Extensive multilabel image classification experiments were conducted comparing our approach with
excellent methods. The experimental results demonstrate that the framework we have developed exhibits strong
competitiveness compared to previous research. Its robust generalization ability makes it applicable to other
medical multilabel image classification tasks.
1. Introduction

Multilabel image classification is a crucial task in which each data
sample may be assigned multiple labels, rather than just a single
label. It is very common in practical applications and can be applied
to various scenarios, such as topic classification for article columns,
medical diagnosis, image annotation, and recommendation systems.

In recent years, there have been significant advancements in mul-
tilabel image classification, largely attributed to deep learning tech-
niques [1]. Specifically, CNNs have demonstrated remarkable perfor-
mance [2]. Gong et al. [3] introduced a multilabel image classifica-
tion method with a weighted approximate ranking loss. This method
achieved good results on several datasets; however, it requires consid-
erable training data and computing resources, and may not perform
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well for noisy labels and imbalanced datasets. Wei et al. [4] utilized a
flexible method that takes an arbitrary number of object local region
hypotheses as inputs to a shared CNN and fuses the predictions of each
hypothesis with max pooling to obtain the final multilabel prediction.
Wang et al. [5] designed the EfficientNet, which is composed of a
feature extractor and a multilabel classifier. It can directly detect one
or more fundus diseases in retinal fundus images for ODIR 20191

fundus images. At the same time, due to the correlation between
labels, when a rare label appears, it is often accompanied by other
labels with higher frequency [6]. Limited by convolutional kernels’
representational capacity, CNN-based multilabel image classification
approaches may not be able to fully exploit this statistical dependence,
resulting in poor classification performance for rare labels. In addition,
due to the limitation of receptive field size, CNN-based methods are
vailable online 30 September 2023
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Fig. 1. Examples of recognition results of the CNN (ResNet50 [13]), the transformer
(ViT) and our proposed CTransCNN. The true labels are in red font, the incorrectly
identified labels are in green font, and the labels correctly predicted with smaller
probability are in blue font.

usually unable to capture the long-range correlations between objects
in the image [7].

As a result, some works have employed transformers to alleviate
the above problems. Wang et al. [8] initially passed the image through
the VGG16 [9] network and then utilized a spatial transformer (ST)
to capture informative regions, followed by long short-term memory
networks (LSTM) to model label correlations. Nie et al. [10] further
enhanced this approach by replacing the ST module with an attentive
transformer localizer module, which can flexibly integrate with LSTM
and discover distinct semantic-aware regions in multilabel recognition.
To better model complex and uncertain spatial label correlations, in-
spired by the remarkable success of vision transformer (ViT) [11] in
image classification tasks, Chen et al. [12] proposed a plug-and-play
module named the spatial and semantic transformer. They first extract
holistic deep features using a CNN backbone and reshape the extracted
features into sequences based on pixel positions.

The above methods have achieved effects, but there are still some
challenges in research on multilabel medical image classification tasks.
First, there may exist correlations between different anatomical struc-
tures and abnormalities in the images. For example, in multilabel CXR
images, certain lung abnormalities may be related to cardiac anomalies,
requiring consideration of the interdependencies among different labels
in the classification task. Second, acquiring a sufficient amount of real
medical images, especially for rare diseases, is difficult. This leads to
label frequency imbalance, where some labels occur more frequently
while others occur less frequently. Third, the distribution of lesion
locations may exhibit a more widespread pattern throughout the entire
image, and the features of different abnormalities may also have dis-
persed distributions. This means that there may be distinct local lesion
features as well as scattered global features in the images.

In this paper, we propose a novel parallel hybrid framework named
CTransCNN to alleviate the above problems. For the first problem,
we introduce label embedding for self-attention operations. This ap-
proach captures the label correlations adaptively rather than relying
on manually predefined label relationships. For the second problem,
we employ cross-attention between image features and label features,
allowing the model to weight the image features based on the impor-
tance of each label. This enables the model to pay more attention to
the features of low-frequency labels, mitigating the impact of label
imbalance and improving the classification accuracy for rare labels.
For the third problem, we utilize a parallel structure that allows infor-
mation interaction between CNN and transformer instead of a simple
concatenation. CNN can provide richer inputs for the transformer by
bottom-up feature extraction, while the transformer can guide the
feature extraction of CNN through top-down attention mechanisms.
This information interaction enhances the collaboration between the
two components and improves the model’s performance. At the same
time, this interactive approach allows CNN, which excels at extracting
local features, to better model the global features extracted by the
2

Table 1
Abbreviations in the paper.

Abbreviation Full name

CNNs Convolutional neural networks
MMAEF Multilabel multihead attention enhanced feature
MBR Multibranch residual
IIM Information interaction module
MSS Multilabel semantic similarity
TCMTD Traditional Chinese medicine tongue dataset
CXR Chest x-ray
ViT Vision transformer
C2T The CNN branch to the transformer branch
T2C The transformer branch to the CNN branch
MIML Multi-instance multilabel
RNN Recurrent neural network
ASL Asymmetric loss
FFN Position-wise feedforward network
BCE Binary cross-entropy
LN Layer normalization
BN Batch normalization
TCM Traditional Chinese medicine

transformer. To better demonstrate the superiority of our approach, we
visualize the result of CNN (ResNet50 [13]), the transformer (ViT) and
our proposed CTransCNN, as shown in Fig. 1.

The main contributions in this paper can be concluded as follows:
(1) Parallel Hybrid Architecture for Multilabel Medical Image Clas-

sification: We introduce a novel parallel hybrid architecture that com-
bines both CNN and transformer. In this architecture, the CNN branch
incorporates the MBR with inner and outer nested branches, while the
transformer branch features the MMAEF with label embedding and the
MSS block. Our goal is to effectively leverage these components to
uncover the implicit correlations among labels and improve multilabel
medical image classification.

(2) Cross-Branch Interaction via IIM: To enhance the model’s non-
linearity and representation capability, we incorporate the IIM, namely
C2T and T2C. These modules enable cross-branch communication and
facilitate the exploration of implicit correlations between labels.

(3) Comprehensive Evaluation and Performance: We extensively
evaluated our proposed framework, CTransCNN, on three distinct
datasets: ChestX-ray11, NIH ChestX-ray14, and our in-house TCMTD.
The evaluation demonstrated superior performance compared to exist-
ing models across all three datasets, highlighting the efficacy of our
approach for multilabel medical image classification.

Table 1 lists all abbreviations in the paper.

2. Related work

In view of the three problems mentioned above, in this section,
we provide a brief overview of previous research on multilabel image
classification tasks, specifically focusing on label dependency, data
imbalance and extensive lesion location.

2.1. Multilabel image classification methods on label dependency

The accuracy of the classifier can be affected by dependencies
between different labels, where certain labels may only appear in the
presence of other labels. Song et al. [14] proposed a deep multimodal
CNN that combines CNN with MIML learning. It automatically gener-
ates instances for MIML by leveraging the structure of CNN, exploits
label correlations by grouping them, and incorporates contextual in-
formation of label groups to generate multimodal instances. Allaouzi
et al. [15] enhanced the accuracy and reliability of disease diagnosis
by integrating a CNN model with convolutional filters that enable
the detection of local patterns in images. This approach effectively
improves the discrimination of features and labels in image analysis,
leading to more precise and reliable disease diagnosis. Wang et al. [16]
introduced a hybrid approach for addressing the challenge of multilabel
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Fig. 2. An overview diagram of the proposed CTransCNN framework, where the transformer branch employs the MMAEF block (green part), the CNN branch utilizes the MBR
block (blue part), and the IIM incorporates C2T and T2C (orange part). Here, 𝐿 represents the total number of stacks of the MMAEF and MBR modules. The horizontal colored
arrows represent inter-layer information propagation, while the vertical colored arrows represent inter-branch information propagation.
image classification by integrating RNN and CNN models. By combining
the strengths of RNN and CNN, it better utilizes the label dependen-
cies within the image and facilitates the learning of joint image-label
embeddings through end-to-end training.

The representational capacity of the convolutional kernel does im-
pose constraints on the accuracy of multilabel image classification.
Taslimi et al. [17] proposed a multilabel classification deep model
based on the swin transformer backbone, which predicts each label
using shared components across models. Recent visual transformer
networks leverage self-attention mechanisms to extract pixel-level fea-
tures and convey richer local semantic information. However, this
approach still falls short of fully exploring global spatial dependencies.
Some researchers utilized transformers to model complex dependencies
between visual features and labels. Lanchantin et al. [18] designed
the classification transformer framework for multilabel image classifi-
cation. They trained a transformer encoder using label masks, which
represent the state of a label as either positive, negative, or unknown
during training, using a ternary encoding scheme. Zhu et al. [19]
introduced a new method named the two-stream transformer to address
the multilabel image classification problem. By leveraging attention
mechanisms to learn the interaction between label semantics and high-
level visual representations, the approach achieves accurate and robust
alignment.

Certain researchers have identified that integrating label informa-
tion as edge features into the model can enhance its perceptual capabil-
ity for label correlation. Lee et al. [1] proposed a hybrid deep learning
model based on CNN and graph neural networks to explore the implicit
correlations among chest diseases and aid in multilabel CXR image
classification tasks. It enhances the correlations among chest diseases
by performing message passing and aggregation among the nodes.

2.2. Multilabel image classification methods on data imbalance

In traditional multilabel image classification, the handling of posi-
tive and negative samples is the same, so it cannot solve the problem of
imbalanced positive and negative samples. However, Ridnik et al. [20]
proposed an ASL function to solve the issue of imbalanced positive
and negative samples in multilabel classification tasks. This method
performs better in multilabel classification tasks because the hyperpa-
rameters of the ASL function can be dynamically adjusted to better
handle the problem. Multilabel image classification requires a signif-
icant amount of annotated data, but obtaining and annotating data
can often be costly. Yi et al. [21] designed MLSL-Net, a multilabel
softmax network that addresses data imbalance and statistical label
3

dependence in CNN-based multilabel classification of pulmonary nod-
ules. MLSL-Net utilizes a strategy for extracting multiscale features and
incorporates a multilabel softmax loss function. To address the issues
of inconsistent target scales and imbalanced labels, Yan et al. [22]
introduced the feature attention network, which incorporates a feature
refinement network and a correlation learning network. It utilizes a
top-down feature fusion mechanism to extract more important features,
enabling it to learn the correlations between convolutional features and
subsequently, the dependencies between labels.

2.3. Multilabel image classification methods on extensive lesion location

Medical images can contain multiple distinct lesion regions, which
might manifest in various positions and areas within the image. Unlike
the task of a single lesion location, multilabel medical image analysis
requires a model capable of simultaneously identifying and labeling
multiple lesion locations in an image. Zhou et al. [23] proposed a
novel attention-augmented memory network model. They employed a
categorical memory module to my contextual information of various
label categories from the dataset to enhance features. They also de-
signed a new channel relationship exploration module and a spatial
relationship enhancement module to capture the interchannel relation-
ships of features and the relationships between pixels in the feature
maps. Liu et al. [24] leveraged a transformer decoder to query the
presence of class labels and detect and aggregate the related features
between labels in feature maps, which were ultimately utilized for
binary classification. The effectiveness of the model was validated on
five multilabel classification datasets and consistently outperformed all
previous works.

3. Proposed method

The proposed approach for multilabel medical image classification
consists of three main stages, as shown in Fig. 2. The first stage is to
extract the initial features (e.g., edge and texture information) using
the Conv module and then send two copies of them to the transformer
branch and the CNN branch, respectively. In the second stage, the
transformer branch adopts the label embedding and the MSS block
of the MMAEF, while the CNN branch utilizes the MBR with nested
inner and outer branches. The stacking of the MMAEF and MBR is
equal to the number of layers in a vanilla transformer, denoted as
𝐿 = 12. We believe that our model’s number of layers is on par
with the original architecture, which enhances structural reusability.

Additionally, the widely recognized ViT model employs the transformer
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architecture for computer vision tasks and also utilizes a foundational
version with 12 layers. Meanwhile, the IIM consists of the C2T and the
T2C components to progressively fuse the feature maps in an interactive
manner. Finally, after obtaining features 𝑇 and features 𝐶 from the two
branches, we investigate three fusion methods for their classification:
direct addition of the branch scores, weighted addition of the branch
scores (with weight coefficients ranging from 0 to 1), and classification
based on the concatenation of the final feature maps from the two
branches. Through a series of experiments, it was found that setting the
weight factor for weighted addition to 0.9 yields the best classification
performance. In this section, we introduce each proposed module and
compare the relevant loss function methods. For the training algorithm
of CTransCNN, see Algorithm 1.

Algorithm 1: The training algorithm of CTransCNN.

1 Given An image dataset D=[𝑥𝑘];
2 Use the Conv module to obtain the base features;
3 epoch is the number of iterations of training;
4 𝑏 is the number of images in a batch;
5 𝑝𝑎𝑟𝑒𝑡𝑜 is a new loss function obtained by combining focal loss and

ASL using pareto theory;
6 𝑛 is the number of images in the dataset;
7 for 𝑘 ← 0 to 𝑒𝑝𝑜𝑐ℎ do
8 for 𝑙 ← 0 to 𝑛 by 𝑏 do
9 In the batch instance 𝑥 =

{

𝑥𝑙+𝑏𝑙

}

, the instance of CNN branch
batch processing is 𝑥𝐶𝑁𝑁 , and the instance of transformer
branch batch processing is 𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 ;

10 𝑥𝑖𝐶𝑁𝑁 ⇔ 𝑥𝑖𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟, where 𝑖 represents layer 𝑖, ⇔ represents
the information interaction between MMAEF module and
MBR module;

11 𝑝𝑎𝑟𝑒𝑡𝑜, where 𝑥𝑓𝑖𝑛𝑎𝑙 represents the output of the fusion of the
last layer of CNN and transformer branches;

12 Perform backpropagation to update parameters;
13 end
14 end

3.1. Label embedding and the MSS block of MMAEF

We employ a decoder-like approach, specifically the MMAEF, as
shown in Fig. 3. Given an input image 𝑥, predict the presence of each
class in a set of multilabel image data, such as a tongue image sample
that can have one or more body constitution diagnosis outcomes.
Assuming there are a total of 𝐶 classes, we represent the corresponding
label of 𝑥 as 𝐿 = {𝐼1, 𝐼2,… , 𝐼𝐶}, where 𝐼𝑖 ∈ {0, 1}, 𝑖 = 1,… , 𝐶, is a
discrete binary indicator. If 𝐼𝑖 = 1, it indicates that image 𝑥 has the
𝑖th class label, otherwise 𝐼𝑖 = 0. Using 𝑥 as input, our model predicts
the probability of the presence of each class, 𝑝 = [𝑝1, 𝑝2,… , 𝑝𝐶 ], where
𝑝𝑖 ∈ [0, 1], 𝑖 = 1,… , 𝐶.

For an input image 𝑥, it is first passed through a 7 × 7 convolution
and a 3 × 3 max pooling to extract features. Then, in the transformer
branch, a label embedding is used to query the MMAEF. However, most
existing works primarily focus on regression from inputs to binary la-
bels, while overlooking the relationship between visual features and the
semantic vectors of labels. Specifically, we obtain the features extracted
by the convolution as the key (𝐾) and value (𝑉 ) inputs and the label
embeddings as the query 𝑄𝑖 ∈ R𝐶×𝑑 , with 𝑑 denoting dimensional-
ity, cross noting the desired 𝐾, 𝑉 and 𝑄. We use a transformer-like
architecture, which includes a self-attention module, a cross-attention
module, a MSS block (as shown in Fig. 4), and a FFN. When using the
self-attention module, label embedding is the conversion of labels into
vector representations so that the computer can better understand and
process them. Compared to masked multihead attention, the conven-
tional self-attention mechanism considers the contextual information
of the entire sequence without placing particular emphasis on the
order between positions. By incorporating label embeddings into the
MMAEF framework, models can effectively and automatically capture
4

Fig. 3. Structure of the MMAEF. Label embedding is the introduction of multiple
labels, self-learning using self-attention, combining image and semantic features by
cross-attention, strengthening features using the MSS block, and finally getting the
output probability.

the semantics of the labels and make more accurate predictions for
multiple labels associated with an input sample. The specific formula
is as follows:

Self-attention: 𝑄(1)
𝑖 = MultiHead

(

�̃�𝑖−1, �̃�𝑖−1, 𝑄𝑖−1
)

(1)

Cross-attention: 𝑄(2)
𝑖 = MultiHead

(

𝑄(1)
𝑖 , 𝐾, 𝑉

)

(2)

MSS: 𝑄(3)
𝑖 = Concat

(

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛1,… , 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ℎ
)

𝑊 𝑂 (3)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑗 = Sof tmax

(

Sigmoid

(

𝑄(2)
𝑖 𝐾𝑇

√

𝑑𝑘

))

𝑉 (4)

𝑄𝑖 = FFN(𝑄(3)
𝑖 ) (5)

where 𝑄𝑖−1 indicates the MMAEF layer 𝑖 update query from the output
of the previous layer, 𝑊 𝑂 is a learnable parameter used for fusion, ℎ
represents the number of attention heads, 𝑗 = 1,… , ℎ, which we set to
6, and 𝑑𝑘 represents the vector dimension of 𝑞 and 𝑘.

MultiHead (𝑄,𝐾, 𝑉 ) and 𝑄𝑖 = FNN (𝑥) have the same decoder def-
inition as the standard transformer [25]. We did not use masked
multihead attention, but instead used self-attention, as autoregressive
prediction is not required in multilabel image classification. In the
MSS block, the embedding is replicated three times, creating separate
copies for the 𝑄, 𝐾, and 𝑉 . The scalar product of the query vector and
the transposed key vector is applied element-wise, and the resulting
products are scaled by the square root of the key vector dimension.
The sigmoid function is then used to map the variables to the range of
0 to 1, increasing the probability of label outputs and improving the
performance of multilabel classification. Afterwards, normalization is
performed using the softmax function, so that the sum of all elements
is equal to 1. The resulting values are then used as weights to linearly
combine the value vectors in 𝑉 , returning the output of this weighted
sum. Finally, this output is used as the final association score between
labels, which is weighted to each label.

In multilabel medical image classification using cross-attention, the
interplay between image feature representation and labels is commonly
represented in the image and the labels are often modeled as a matrix
product. This matrix product is computed through two distinct atten-
tion mechanisms, where one attention mechanism attends to regions in
the image and the other attends to the interactions between the labels.
In the case of multilabel medical classification, the results are processed
by calculating the attention weights for each label using the sigmoid
function, which is then multiplied by the value vector sequence and
normalized using the softmax function to obtain the weight distribution
for each position. By applying cross-attention between image features
and label features, we can measure the image features based on the
importance of each label.
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Fig. 4. Structure of the MSS block. The embedding is replicated in three copies of 𝑄, 𝐾, and 𝑉 . Firstly, 𝑄 and 𝐾 are multiplied together to increase the label prediction probability
using the sigmoid function, and then the output is normalized by softmax as the final correlation between the labels, weighted to each label.
Fig. 5. Structure of the MBR: (a) residual block uses the standard residual connection;
(b) rep_method increases the inner and outer nesting.

3.2. Multibranch residual module (MBR)

As shown in Fig. 5, the CNN branch of this paper adopts the
nested structure of multibranch residual inner and outer branches, in
which the resolution of the feature map decreases with the depth of
the network. Following the definition in ResNet, we divide the entire
CNN branch into four stages, each consisting of multiple convolutional
blocks.

We adopt the basic bottleneck block of ResNet, which usually
contains three convolutional layers. The first convolutional layer uses a
smaller 1 × 1 downprojection convolution to reduce the dimensionality
of the feature map. The second convolutional layer uses a larger 3 × 3
spatial convolution to extract features. And, the third convolutional
layer again uses a smaller 1 × 1 upprojection convolution to reduce
the dimensionality of the feature map. It also incorporates residual
connections between the input and output, as illustrated in Fig. 5(a).
The rep_method undergoes modification based on the residual block,
wherein the primary 3 × 3 convolution is replaced by the residual
block. This introduces an inner nesting process, accompanied by the
addition of an inner branch, as shown in Fig. 5(b).

Compared with the residual block, rep_method uses an inner and
outer nesting method. It allows the model to learn more detailed
information. This design can reduce computational and parameter
complexity while maintaining model performance. In CNN, the convo-
lutional kernel slides and overlaps on the feature map, providing the
possibility of retaining locally detailed features. Therefore, the CNN
branch can continuously provide local feature details for the trans-
former branch through the C2T module (see Section 3.3 for details).
The MBR improves the feature representation ability of the model,
especially for multilabel classification tasks. It plays a crucial role
5

in improving the model’s ability to represent complex visual features
and their relationships with multiple labels. By exploiting residual
connections and combining information from different branches, the
model can effectively learn and capture relevant features for accurate
multilabel classification.

3.3. C2T and T2C in information interaction module (IIM)

For the CNN branch, it is a critical issue to map the features to the
transformer. Similarly, for the transformer branch, it is also a very im-
portant issue to embed the patch embedding into the CNN. We realize
that the feature dimensions of CNN and transformer are different. The
CNN feature dimensions are [𝐵,𝐶,𝐻,𝑊 ], where 𝐵 represents the batch
size, 𝐶 represents a channel, 𝐻 represents height, and 𝑊 represents
width. In contrast, the transformer feature dimensions are [𝐵, _, 𝐶],
where ‘_’ represents the sum of the number of image patches and class
tokens, usually 𝐻×𝑊 + 1. To solve this problem, we propose the C2T
and T2C approaches to gradually fuse feature maps in an interactive
manner, as shown in Fig. 6.

The CNN branch to the transformer branch (C2T). We change the
feature map dimensions using a 1 × 1 convolution. At the same time,
we combine the feature information from different channels to enhance
the expressive power of the features. The 1 × 1 convolution reduces
the number of parameters in the model, thereby reducing computation
and memory consumption. We use average pooling to downsample
the feature map, reducing the spatial dimension while retaining the
main information in the feature map. We use the GELU activation
function, which allows for fast convergence and reduces training time,
improving the efficiency of the model training. LN is used to regularize
the features.

Specifically, let us consider 𝑋 ∈ R𝐻×𝑊 ×𝐶 representing a feature
map of a convolutional MBR module, where 𝐶 is the channel dimen-
sion, 𝐻 and 𝑊 represent the spatial dimensions (height and width). In
other words, the output feature map has 𝐻×𝑊 pixel positions. Then,
after the convolutional residual connection, we reshape these enhanced
features along the spatial dimensions and obtain the flattened features:

𝑋𝑐𝑛𝑛 = 𝑓𝑐𝑜𝑛𝑣 (𝑋) + 𝑐𝑜𝑛𝑣 (𝑋) (6)

𝑋′
𝑐𝑛𝑛 = 𝑋𝑐𝑛𝑛 +𝑋 (7)

𝑋𝑟𝑒𝑠ℎ𝑎𝑝𝑒 = Reshape
(

AvgPool
(

𝑋′
𝑐𝑛𝑛

))

(8)

𝑋′ = 𝑓𝑐𝑜𝑛𝑣
(

𝑋𝑟𝑒𝑠ℎ𝑎𝑝𝑒
)

(9)

where 𝑓𝑐𝑜𝑛𝑣 (⋅) represents a 1 × 1 convolution operation with normal-
ization and activation function. 𝑐𝑜𝑛𝑣 𝑋 denotes a 1 × 1 convolution
( )
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Fig. 6. Structure of the IIM, which includes the C2T and T2C. Feature maps are collected from local convolution operators, while patch embeddings are aggregated by a global
self-attentive mechanism. Therefore, C2T and T2C are applied in each block (except the first block) to fill the semantic gaps step by step.
operation. AvgPool refers to the average pooling operation. Reshape (⋅)
represents the reshaping operator. 𝑋𝑟𝑒𝑠ℎ𝑎𝑝𝑒 ∈ R(𝐻×𝑊 )×𝐶 denotes the
flattened features.

The transformer branch to the CNN branch (T2C). The appropriate
upsampling alignment space scale is used when going from the trans-
former branch to the CNN branch. Additionally, BN is used to regularize
the features. The ReLU activation function, commonly used in convo-
lution operations, is used. Upsampling the feature map using bilinear
interpolation can improve the spatial resolution and thus capture more
detailed information. Similar to C2T, we also use multiple 1 × 1
convolutions to optimize features for information exchange. However,
after the 1 × 1 convolution, we cross both ReLU and sigmoid activation
functions to improve the nonlinear fitting ability. Finally, residual
connections are added between the output of bilinear interpolation and
the output after a series of operations to preserve the importance of the
features and improve the representation capability of the model.

In particular, let us consider 𝑋′ ∈ R(𝐻×𝑊 +1)×𝐶 as the feature map
of an MMAEF module, where 1 represents the class token. First, we
remove the class token through a simple operation to obtain 𝑋𝑛𝑜𝑛_𝑐𝑙𝑠.
Then, the sequence is restored back to a 2D feature map. Finally, we
preserve more image detail information through convolutional opera-
tions and bilinear interpolation. The specific expression is as follows:

𝑋𝑛𝑜𝑛_𝑐𝑙𝑠 = 𝑋′ [∶, 1 ∶] (10)

𝑋𝑟𝑒𝑠𝑡𝑜𝑟𝑒 = Restore
(

𝑋𝑛𝑜𝑛_𝑐𝑙𝑠
)

(11)

𝑋𝑡𝑟𝑎𝑛𝑠 = 𝑓𝑐𝑜𝑛𝑣
(

𝑋𝑛𝑜𝑛_𝑐𝑙𝑠
)

(12)

𝑋′
𝑡𝑟𝑎𝑛𝑠 = 𝑓𝑐𝑜𝑛𝑣_𝑠(𝑓𝑐𝑜𝑛𝑣_𝑟

(

B𝑋𝑡𝑟𝑎𝑛𝑠
)

) (13)

𝑋 = 𝑓𝑐𝑜𝑛𝑣
(

𝑋′
𝑡𝑟𝑎𝑛𝑠

)

+ B
(

𝑋𝑡𝑟𝑎𝑛𝑠
)

(14)

where 𝑋𝑛𝑜𝑛_𝑐𝑙𝑠 represents the tensor without the class token, and
Restore (⋅) represents the inverse operation of Reshape (⋅); 𝑓𝑐𝑜𝑛𝑣_𝑟 repre-
sents a 1 × 1 convolution operation followed by the ReLU function,
and 𝑓𝑐𝑜𝑛𝑣_𝑠 represents a 1 × 1 convolution operation followed by the
sigmoid function; B (⋅) represents the bilinear interpolation operation.

3.4. Customized multilabel loss function

The commonly used loss function for multilabel image classification,
BCE loss [26], is widely applied in the early stages of research and
development in this field. Focal loss [27] is an improvement over BCE
loss that mainly focuses on reducing the weight of easily classified
samples and increasing the weight of hard-to-classify samples, making
the model more attentive to difficult samples. Compared to BCE loss,
6

focal loss performs better in handling class imbalance problems and
paying more attention to hard-to-classify samples. It is suitable for
multiclassification problems and converges faster. Recently, consider-
ing the problem of label imbalance, Ridnik et al. [20] proposed an
ASL, which can assign different punishments to misclassified labels of
different classes according to the actual situation, making the model
more focused on classes with fewer samples.

The proposed CTransCNN hybrid network outputs a logarithm for
each of the 𝐶 labels, denoted as ℎ𝑖, 𝑖 = 1,… , 𝐶, which is then in-
dependently activated through the sigmoid function 𝜎

(

ℎ𝑖
)

. The total
classification loss, 𝐿𝑡𝑜𝑡𝑎𝑙, is obtained by summing up the losses of the 𝐶
labels.

𝐿𝑡𝑜𝑡𝑎𝑙 =
𝐶
∑

𝑖=1
𝐿
(

𝜎
(

ℎ𝑖
)

, 𝑦𝑖
)

(15)

Focal loss is obtained by setting 𝐿+ and 𝐿−, with the specific
formula as follows:
{

𝐿+ = (1 − 𝑝)𝛾 𝑙𝑜𝑔 (𝑝)
𝐿− = 𝑝𝛾 𝑙𝑜𝑔 (1 − 𝑝)

(16)

where 𝑝 = 𝜎 (ℎ) is the output probability of the network, and 𝛾 is the
focusing parameter. When 𝛾 = 0, the formula reduces to BCE loss.

Shifting the loss function by a factor 𝑚, the ASL function is defined
as follows:

𝑝𝑚 = 𝑚𝑎𝑥 (𝑝 − 𝑚, 0) (17)

𝐴𝑆𝐿 =
{

𝐿+ = (1 − 𝑝)𝛾+ 𝑙𝑜𝑔 (𝑝)
𝐿− =

(

𝑝𝑚
)𝛾− 𝑙𝑜𝑔

(

1 − 𝑝𝑚
) (18)

where 𝑚 is the shifting factor of the loss function, and 𝛾+ and 𝛾− denote
the positive and negative focusing parameters, respectively.

A Pareto optimal solution is one in which ‘‘none of the objectives
can be improved without sacrificing at least one of the other objec-
tives’’. Pareto optimal solutions emphasize trade-offs and balances in
multi-objective optimization to avoid improving one objective while
weakening others. Inspired by this, we combine Focal loss and ASL and
use Pareto optimization theory to balance the two loss functions. We
put the two losses into a list, calculate the Pareto front and update the
loss weights.

4. Experiments

4.1. Datasets

Three datasets were used to evaluate our proposed CTransCNN
method: two publicly available multilabel CXR datasets, and a self-built

multilabel tongue image dataset for TCM constitution classification.



Knowledge-Based Systems 281 (2023) 111030X. Wu et al.
Fig. 7. Comparison of the number of cases for each disease in the NIH ChestX-ray14
dataset.

Table 2
The number of the ChestX-ray11 images for each disease. There are serious data
imbalances, for example, there are many more CVC-Normal images than ETT-Abnormal
images.

Disease Number of images Percentage

ETT-Abnormal 79 0.16%
ETT-Borderline 1138 2.25%
ETT-Normal 7240 14.30%
NGT-Abnormal 279 0.56%
NGT-Borderline 529 1.05%
NGT-Incompletely Imaged 2748 5.43%
NGT-Normal 4797 9.48%
CVC-Abnormal 3195 6.32%
CVC-Borderline 8460 16.71%
CVC-Normal 21 324 42.10%
Swan Ganz Catheter Present 830 1.64%

The Catheter and Line Position Challenge on Kaggle2 is a com-
petition that involves classifying 40 000 images to detect misplaced
catheters. Table 2 shows the number of ChestX-ray11 images for each
disease. In this study, 30 083 CXR image training data were used
for multilabel sample classification, which was named ChestX-ray11.
There are a total of 11 different types of catheter placement, includ-
ing ETT-Abnormal, ETT-Borderline, ETT-Normal, NGT-Abnormal, NGT-
Borderline, NGT-Incompletely Imaged, NGT-Normal, CVC-Abnormal,
CVC-Borderline, CVC-Normal, and Swan Ganz Catheter Present. Each
image may have one or more types of catheter placement. The images
are of varying sizes and are gray-scale.

The NIH ChestX-ray14 dataset,3 which is an extension of the
ChestX-ray8 [28], includes 112 120 frontal X-ray images from 30 805
unique patients with annotations for 14 common diseases. The im-
ages have a size of 1024 × 1024 pixels and are from special patient
populations. The 14 pathologies in NIH ChestX-ray14 are Atelectasis,
Cardiomegaly, Consolidation, Edema, Effusion, Emphysema, Fibrosis,
Hernia, Infiltration, Mass, Nodule, Pleural Thickening, Pneumonia, and
Pneumothorax. Fig. 7 shows the number of NIH ChestX-ray14 images
for each disease.

The TCMTD is a multilabel classification task for 9 different TCM
pathologies, conditions viz. ‘Qixu’ (qi deficiency), ‘Qiyu’ (qi stagna-
tion), ‘Shire’ (damp heat), ‘Tanshi’ (phlegm damp), ‘Tebing’ (idiosyn-
cratic), ‘Xueyu’ (blood stagnation), ‘Yinxu’ (yin deficiency), ‘Pinghe’
(balanced), and ‘Yangxu’ (yang deficiency), which is a multilabel clas-
sification task. The balanced constitution is ‘Pinghe’ and the rest are
the imbalanced constitutions. The TCMTD involves 1050 student volun-
teers, of which 1019 images were usable. Some images were discarded

2 ChestX-ray11: kaggle.com/competitions/ranzcr-clip-catheter-line-classific
ation/data.

3 ChestX-ray14: nihcc.app.box.com/v/ChestXray-NIHCC.
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Fig. 8. The preprocessing of tongue image analysis includes converting the raw tongue
image into a tongue body image, followed by segmentation into tongue coating and
tongue body images.

Table 3
Detail annotation of a sample of the TCMTD.

Qixu Qiyu Shire Tanshi Tebing Xueyu Yinxu

1 0 0 1 0 0 0
0 0 0 1 0 1 1
0 1 1 0 0 1 0
1 0 0 0 1 1 0
1 0 0 0 0 0 0
0 0 1 0 0 1 1

‘Pinghe’ and ‘Yangxu’ conditions among the nine TCM constitutions are not displayed
due to sample collection limitations.

due to poor quality resulting in unclear images, machine-lagging im-
age capture failure, and the presence of tongue studs in the images.
The entire study followed the requirement of Human Research Ethics
(approval number: [2019] 18). Tongue images were captured with
professional equipment in a closed environment, and multilabel con-
stitutional labels were annotated by clinical TCM experts. The dataset
includes 1019 tongue images from volunteers, with 7 types of patterns
representing 9 different TCM constitutions (patterns of disharmonies)
excluding ‘Pinghe’ and ‘Yangxu’. Each image is labeled as one or
more pathological conditions. The original dataset consists of a size of
1716 × 2574 pixels. Each image is labeled with 𝐼 = {𝐼1, 𝐼2,… , 𝐼C}, and
𝐶 is 7 in the tongue dataset. Each element of 𝐼 is set as 0 for absence
and 1 for presence, as shown in Table 3.

4.2. Image preprocessing

Because the ChestX-ray11 and NIH ChestX-ray14 are public
datasets, simple label processing and size normalization are sufficient.
However, the TCMTD is an undisclosed and variable-sized dataset,
and the coating and body of the tongue are intertwined. Additionally,
changes in the body and coating of the tongue are closely related to
the body’s organs, qi and blood, and the severity of pathogenic factors.
Therefore, it is necessary to separate the tongue body and coating.
First, based on the characteristics of tongue images, the multilayer
edge attention network [29], which introduces attention mechanisms
and fuses edge information, is used to segment the tongue from the
background image. Second, after tongue segmentation, the tongue
coating and body are separated to more accurately identify tongue and
coating colors and extract tongue and coating features. The original
RGB image is first converted to the Lab color space, and the a-channel
image is enhanced and corrected based on color block differences.
The K-means clustering algorithm is then used to separate the tongue
coating and body. Separating the tongue coating and body facilitates
network feature extraction, and a multilabel learning algorithm is used
for classification. The preprocessing results of the tongue image analysis
are shown in Fig. 8.
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4.3. Evaluation criteria

In this study, we utilized seven widely recognized evaluation met-
rics for multilabel classification to assess the performance of different
models. These metrics include:

• Mean Average Precision (mAP) across all categories.
• Overall Precision (OP).
• Overall Recall (OR).
• Overall F1-measure (OF1).
• Per-class Precision (CP).
• Per-class Recall (CR).
• Per-class F1-measure (CF1).

Furthermore, we employed receiver operating characteristic (ROC)
urves and calculated the area under the curve (AUC) to compare the
verall classification performance of each model on both the ChestX-
ay11 and NIH ChestX-ray14 datasets. This approach provides a visu-
lly intuitive evaluation the model’s performance. Specifically, we used
-values to measure the degree of difference between the observed data
nd hypotheses, as described in Section 4.5.

Pi =
1

|

|

𝐺𝑖
|

|

𝑛
∑

𝑘=1
𝑃𝑘 × 𝑟𝑒𝑙𝑘 (19)

AP = 1
||

||

∑

𝑖=1
AP𝑖 (20)

where |𝐺𝑖| represents the number of samples in the 𝑖th category,
𝑃𝑘 represents the precision of the top 𝑘 predictions, 𝑟𝑒𝑙𝑘 represents
whether the 𝑘th prediction is the true label of the sample (1 if yes,
0 if no), 𝑛 represents the total number of predictions, 𝑦 represents the
et of all labels, and APi represents the average precision for the 𝑖th
abel.

P = 1
𝐾

𝐾
∑

𝑖=1

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

(21)

R = 1
𝐾

𝐾
∑

𝑖=1

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

(22)

F1 = 1
𝐾

𝐾
∑

𝑖=1

2 × 𝑇𝑃𝑖
2 × 𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

(23)

OR = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(24)

OP = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(25)

OF1 = 2 × 𝑇𝑃
2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(26)

where 𝐾 represents the total number of categories, 𝑇𝑃𝑖 represents the
number of true positives for 𝑖th category, 𝐹𝑃𝑖 represents the number of
false positives for 𝑖th category, and 𝐹𝑁 𝑖 represents the number of false
negatives for 𝑖th category.

4.4. Implementation details

To ensure a fair comparison, we normalized the size of the input
images to 224 × 224 for all experiments during the training, vali-
dation, and testing stages. We trained the entire network using the
AdamW [30] algorithm and a cosine annealing strategy, with an initial
learning rate of 1e-3, a momentum of 0.5 and 0.999, a single GPU batch
size of 32, and 8 threads per single GPU. During the training process, we
used data augmentation techniques such as random horizontal flipping,
random scaling cropping, and RandAugment with a probability of 0.5.
During the testing phase, only scaling was performed. In particular,
we partitioned all three datasets into three subsets, including three
subgroups (70% training, 20% validation, and 10% testing). Addition-
ally, all experiments were implemented using Python 3.9 and PyTorch
8

1.11.0 in the CUDA 11.4 universal computing framework, running on
an Ubuntu 20.04.2 operating system with one Nvidia A5000 GPU with
24 GB memory. We implemented our models using the open source
computer vision library MMCV4, which was developed by OpenMMLab.
We would like to express our gratitude to the developers for their
valuable contributions to the research community.

4.5. Comparative results on the ChestX-ray11 and NIH ChestX-ray14
datasets

To ensure a fair comparison, we compute the AUC scores for each
category and the average AUC score for all diseases using the afore-
mentioned parameter settings and classic methods. Tables 4 and 5
present the experimental results on the ChestX-ray11 and NIH ChestX-
ray14 datasets, respectively. The CTransCNN is compared with 10
excellent medical image classification networks, achieving the best
performance in multilabel classification. Furthermore, we employed a
paired t-test to evaluate the statistical significance of the performance
differences between our proposed model and the models proposed by
other authors. Based on the p-values, it can be concluded that there are
statistically significant differences in performance across the models for
this particular task.

As shown in Table 4, for the ChestX-ray11 dataset, the CTransCNN
achieved the highest average AUC score (83.37%) compared to the
other models. In terms of individual diseases, CVC-Normal had the low-
est average AUC score (58.81%), while ETT-Normal achieved the high-
est average AUC score (94.23%). ResNet34, ResNet50, ResNeXt [31],
and SEResNet50 [32] exhibited good average AUC values ranging
from 79.34% to 80.45%. These models consistently performed well
across multiple labels, making them reliable choices for multilabel
image classification tasks. Conformer and RepVGG showed relatively
higher average AUC values of 81.45% and 83.14%, respectively. These
models demonstrated excellent performance on specific labels, with
RepVGG [35] achieving the highest AUC score (92.58%) on ETT-
Abnormal. ViT, Swin transformer, ConvNeXt, and DeiT [36] had rel-
atively lower average AUC values ranging from 72.01% to 76.32%.
Based on the average AUC values, RepVGG and CTransCNN appear to
be the top-performing models, with CTransCNN outperforming
RepVGG by a margin of 0.23% in terms of the average AUC score.

As shown in Table 5, for the NIH ChestX-ray14 dataset, based on
the average AUC scores, our CTransCNN model performed well across
most diseases and overall, with an average AUC score of 78.47%. Other
models that performed relatively well include ConvNeXt (76.73%),
Rep-VGG (76.53%), and Conformer (76.39%). The ViT model had
the lowest average AUC score, at 54.00%. Among the different dis-
eases, Pneumonia had the lowest average AUC score (57.58%), while
Cardiomegaly had the highest average AUC score (82.58%), followed
by Edema (82.51%). Through the above analysis, it can be observed
that models with different architectures have varying performances
across different disease classification tasks. For example, models such as
Conformer, ConvNeXt, and RepVGG performed well in terms of average
AUC scores, while transformer-based models such as ViT and DeiT had
relatively lower scores. In terms of the average AUC value, ConvNeXt
appears to be the top-performing model along with CTransCNN, but
our proposed CTransCNN model outperformed ConvNeXt by a margin
of 1.74% in the average AUC score.

To facilitate comparison with other algorithms and to showcase
the network’s overall performance, Figs. 9 and 10 illustrate the clas-
sification performance of the compared methods, along with the AUC
for each disease. These visualizations pertain to the ChestX-ray11 and
NIH ChestX-ray14 datasets, respectively. In Fig. 9(a) for the ChestX-
ray11 dataset, the ROC curve of our method is closer to the top-left
corner, indicating superior performance compared to other methods.

4 github.com/open-mmlab/mmcv.

http://github.com/open-mmlab/mmcv
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Fig. 9. Comparison of the average AUC scores (%) of CTransCNN and 10 common networks on the ChestX-ray11 dataset. (a) Compare the ROC curves of different network models;
(b) Compare the diagnostic model performance of 11 diseases.
Table 4
Comparison of the classification performance of our different models on the ChestX-ray11 dataset. The best results are shown in bold.

AUC score (%) ResNet34
[13]

ResNet50
[13]

ResNeXt
[31]

SEResNet50
[32]

ViT
[11]

Swin
transformer
[17]

Conformer
[33]

ConvNeXt
[34]

RepVGG
[35]

DeiT
[36]

CTransCNN
(ours)

Mean

ETT-Abnormal 78.26 82.97 74.16 85.95 77.68 67.23 86.39 74.96 92.58 79.36 90.82 80.95
ETT-Borderline 88.51 89.33 85.96 89.96 83.02 78.49 81.63 81.99 89.39 83.56 88.93 85.53
ETT-Normal 96.96 97.37 96.95 97.29 88.18 83.84 97.78 94.96 97.37 87.95 97.80 94.23

NGT-Abnormal 78.15 80.69 79.63 77.26 77.18 74.09 79.11 72.54 82.52 76.48 83.42 78.28
NGT-Borderline 78.10 79.35 81.14 78.58 73.41 69.74 81.02 69.40 81.83 74.51 81.32 77.13
NGT-Incompletely Imaged 92.94 93.09 93.2 92.37 87.88 82.97 93.87 88.66 93.67 87.25 94.53 90.95
NGT-Normal 91.19 92.72 91.57 91.55 85.09 81.86 92.36 88.74 92.92 85.93 92.24 89.66

CVC-Abnormal 59.64 61.26 62.11 61.66 60.60 59.29 64.14 56.05 63.84 61.44 64.59 61.33
CVC-Borderline 58.80 58.89 59.26 58.99 56.36 56.18 60.79 58.57 60.79 57.44 61.90 58.91
CVC-Normal 57.20 59.14 61.32 57.89 55.80 53.38 60.78 59.19 62.64 56.23 63.32 58.81

Swan Ganz Catheter Present 92.95 95.72 97.11 93.44 87.48 84.99 98.07 90.51 97.01 89.31 98.19 93.17

Mean 79.34 80.96 80.22 80.45 75.70 72.01 81.45 75.96 83.14 76.32 83.37 –
p-value* .0016 .0034 .0235 .0008 .0000 .0000 .0130 .0001 .2208 .0000 – –

* The p-values are calculated from the AUC comparison between the CTransCNN and the other 10 models, and a p-value < 0.05 is considered statistically significant.
Table 5
Comparison of the classification performance of our different models on the NIH ChestX-ray14 dataset. The best results are shown in bold.

AUC score (%) ResNet34
[13]

ResNet50
[13]

ResNeXt
[31]

SEResNet50
[32]

ViT
[11]

Swin
transformer
[17]

Conformer
[33]

ConvNeXt
[34]

RepVGG
[35]

DeiT
[36]

CTransCNN
(ours)

Mean

Atelectasis 73.35 73.87 73.51 73.81 53.53 62.48 72.68 73.31 73.57 70.19 74.84 70.47
Cardiomegaly 91.00 89.18 89.03 89.72 50.18 56.67 90.69 91.42 89.65 80.81 89.95 82.58
Consolidation 70.19 71.72 72.98 71.73 52.43 64.33 69.96 71.19 72.07 68.06 73.08 68.89
Edema 85.40 85.08 84.32 86.02 68.78 76.52 82.82 84.89 84.09 83.85 85.80 82.51
Effusion 81.02 81.79 82.09 81.40 44.74 64.95 80.62 82.77 83.06 77.17 83.72 76.67
Emphysema 76.39 83.29 80.63 80.88 53.19 55.94 81.45 80.79 82.28 75.45 85.63 76.00
Fibrosis 76.66 76.37 78.26 77.18 60.02 69.27 80.43 73.94 75.82 73.84 77.79 74.51
Hernia 69.00 79.62 80.96 78.88 67.29 69.35 78.62 88.84 78.72 69.99 88.14 77.22
Infiltration 69.12 68.85 69.24 69.78 56.07 61.89 69.73 68.87 70.25 67.16 70.65 67.42
Mass 74.96 77.04 76.07 74.92 47.56 57.07 76.14 73.97 74.82 66.77 78.06 70.68
Nodule 69.65 68.94 71.36 69.34 50.83 61.15 72.81 72.73 71.17 65.79 74.17 68.00
Pleural Thickening 67.83 66.99 69.23 67.43 46.46 57.09 68.13 70.51 69.87 63.99 69.01 65.10
Pneumonia 59.02 59.21 58.32 60.39 48.97 54.07 62.31 55.68 61.87 50.50 62.99 57.58
Pneumothorax 82.39 83.32 81.81 85.75 55.90 61.65 83.05 85.34 84.21 74.86 84.68 78.46
Mean 74.71 76.09 76.27 76.23 54.00 62.32 76.39 76.73 76.53 70.60 78.47 –
p-value* .0077 .0007 .0012 .0039 .0001 .0001 .0072 .0123 .006 .0001 – –

* The p-values are calculated from the AUC comparison between the CTransCNN and the other 10 models, and a p-value < 0.05 is considered statistically significant.
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Fig. 10. Comparison of the average AUC scores (%) of CTransCNN and 10 common networks on the NIH ChestX-ray14 dataset. (a) Compare the ROC curves of different network
models; (b) Compare the diagnostic model performance of 14 diseases.
Table 6
Comparison of the classification performance (mean±standard deviation) of our different models on the TCMTD. The best results are shown in bold.

Network AUC (%) mAP (%) CP (%) CR (%) CF1 (%) OP (%) OR (%) OF1 (%)

ResNet34 [13] 78.33 ± 3.73 61.67 ± 5.36 54.70 ± 2.70 58.24 ± 3.31 56.41 ± 2.87 76.74 ± 1.48 85.83 ± 1.41 81.03 ± 1.36
ResNet50 [13] 82.66 ± 1.46 64.60 ± 2.96 58.67 ± 2.97 61.06 ± 2.51 59.81 ± 2.36 78.25 ± 1.19 86.64 ± 1.79 82.23 ± 1.35
ResNeXt [31] 82.90 ± 0.77 65.20 ± 0.98 59.88 ± 0.70 61.78 ± 0.77 60.81 ± 0.60 79.43 ± 0.43 86.85 ± 0.86 82.97 ± 0.35
SEResNet 50 [32] 82.87 ± 1.93 65.60 ± 2.37 58.29 ± 2.63 60.76 ± 2.37 59.48 ± 2.35 79.01 ± 1.07 87.43 ± 1.10 83.00 ± 0.90
ViT [11] 63.83 ± 4.73 47.47 ± 2.45 40.91 ± 1.55 69.25 ± 1.84 51.41 ± 1.49 58.31 ± 1.79 95.57 ± 1.16 72.40 ± 1.14
Swin transformer [17] 54.22 ± 2.54 43.59 ± 1.25 41.84 ± 4.89 60.05 ± 2.92 49.10 ± 2.97 62.99 ± 1.69 92.67 ± 1.26 74.97 ± 0.81
Conformer [33] 82.05 ± 1.04 63.47 ± 0.76 58.59 ± 2.31 62.15 ± 0.87 60.29 ± 1.27 78.15 ± 1.22 87.43 ± 1.12 82.53 ± 1.15
ConvNeXt [34] 72.34 ± 2.67 58.82 ± 3.68 45.91 ± 2.97 59.97 ± 1.46 51.94 ± 1.83 66.39 ± 3.30 84.55 ± 2.64 74.33 ± 2.52
RepVGG [35] 79.94 ± 2.56 63.43 ± 1.69 58.11 ± 2.59 61.87 ± 1.27 59.91 ± 1.83 78.40 ± 1.27 87.13 ± 1.34 82.53 ± 1.28
DeiT [36] 65.09 ± 2.34 50.49 ± 2.31 43.76 ± 0.99 67.05 ± 2.21 52.95 ± 1.22 61.05 ± 1.68 94.32 ± 1.44 74.09 ± 0.84
CTransCNN(ours) 84.56 ± 1.16 67.67 ± 1.48 63.31 ± 4.55 65.42 ± 2.44 64.32 ± 3.46 79.51 ± 1.05 89.31 ± 0.44 84.12 ± 0.67
Fig. 9(b) shows the AUC curves for each disease, where the red curve
of our method is closer to the outermost arc, further confirming its
effectiveness. For the NIH ChestX-ray14 dataset, Fig. 10 is the same.

In summary, across the ChestX-ray11 and NIH ChestX-ray14
datasets, the CTransCNN achieved the highest average AUC values of
83.37% and 78.47%, respectively, outperforming all other models. This
indicates its strong overall performance on different labels, which can
be attributed to the incorporation of the MMAEF module. This module
facilitates the exploration of implicit correlations between diseases by
utilizing a set of label embeddings and the MMS block. Additionally, the
introduction of MBR optimization, C2T, and T2C enhances the model’s
representation capacity, proving crucial in addressing the challenges of
imbalanced multilabel image classification tasks.

4.6. Comparative results on the TCMTD

Table 6 presents a quantitative study of the performance of CTran-
sCNN and ten excellent classification networks on the TCMTD. All
evaluation metrics in Table 6 are the average values and standard
deviations of five experiments.

Quantitative analysis: According to Table 6, the CTransCNN out-
performs the other models in the multilabel image classification task.
Specifically, CTransCNN achieves the highest scores in both AUC and
mAP metrics, with values of 84.56% and 67.67%, respectively. In
addition, it also performs well in CP, CF1, OP, and OF1 metrics,
surpassing the other models. These metrics indicate that CTransCNN
developed by our team can more accurately predict the presence or
10
absence of each label in multilabel image classification tasks. ResNet50
outperforms ResNet34 in all metrics, suggesting that the utilization of
deeper residual blocks enhances the model’s ability to capture image
features. This improvement effectively addresses the vanishing gradient
problem, leading to more effective training of the model. ViT, Swin
transformer, and DeiT perform relatively poorly in multilabel image
classification tasks. For small datasets or multilabel classification tasks,
these models perform worse than ResNet models. RepVGG performs
relatively well in some evaluation metrics, surpassing commonly used
image classification models such as ResNet34 and ResNet50. Com-
pared with ResNet34, ResNet50, ResNeXt50, SEResNet50, ViT, Swin
transformer, Conformer, ConvNeXt, RepVGG, and DeiT, the CTransCNN
improves the main evaluation metric AUC by 6.23%, 1.90%, 1.66%,
1.69%, 20.73%, 30.34%, 2.51%, 12.22%, 4.62%, and 19.47%, respec-
tively. These experimental results demonstrate that the CTransCNN
can effectively perform multilabel image classification and outperforms
other comparative methods.

Qualitative analysis: We generated their heatmaps using Grad-
CAM++, eigen_smooth for removing a large amount of noise, and
aug_smooth for testing time augmentation, as shown in Fig. 11. Net-
works such as ResNet34, ResNet50, SEResNet50, and RepVGG pay
more attention to local edge information. The heat map weight dis-
tribution of models like ViT, Swin transformer, and DeiT appears
relatively uniform. This indicates their strong global cognitive capabil-
ity, with global information spanning across the entire image. Although
Conformer pays attention to both local and global information, the
heatmaps of the model are not similar in different runs, indicating
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Fig. 11. Visualization results of some samples of the TCMTD by the GradCAM++ method. Warmer heatmap colors (from light blue to dark red) indicate an increase in value or
intensity or intensification of a feature.
Fig. 12. Violin plots of AUC scores of CTransCNN and 10 comparison networks. A
violin plot consists of a central box plot and distribution curves on both sides. The
solid black line in the box plot represents the median.

that the model is unstable. The heatmap generated by the CTransCNN
model on different images is very similar, indicating that our model
is relatively stable. At the same time, our model focuses on both local
features and has the global cognitive ability, which better locates the
area of interest for classification. Fig. 12 shows the violin plots of
AUC scores for the CTransCNN and 10 other comparative networks.
ResNet50, SEResNet50, ConvNeXt, and CTransCNN have more concen-
trated kernel density distributions in their violin plots. The CTransCNN
has a higher median, indicating better performance on AUC, while
ViT, Swin transformer, and DeiT have poorer AUC performance. We
conducted multilabel classification on images using the CTransCNN and
ten common networks.

4.7. Ablation study

In order to assess the effectiveness and individual contributions of
the various modules in our proposed CTransCNN network, we per-
formed a series of step-by-step ablation experiments on the ChestX-
ray11 and TCMTD. We compared the following models to evaluate their
performance:

Baseline: The transformer branch is the standard transformer en-
coder and the CNN branch is the residual block of ResNet, and there
is no door-to-door mechanism when information is exchanged and
exchanged.

Model 1: Based on the Baseline, the standard transformer encoder
is changed to the MMAEF module (without the MSS block).

Model 2: Based on the Baseline, change the residual block of ResNet
to rep_method, that is, increase the inner and outer nesting.
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Model 3: Based on Model 1, replace the residual block with
rep_method.

Model 4: Based on the Baseline, add IIM modules.
Model 5: Based on Model 1, add IIM modules.
Model 6: Based on Model 4, replace the residual block to

rep_method.
Model 7: Based on Model 5, replace the residual block with

rep_method, and in this case, the MMAEF module does not include the
MSS block.

Model 8: Based on Model 6, Model 8 adds the MSS block.
CTransCNN (ours): Based on Model 7, the CTransCNN adds the

MSS block.
Quantitative analysis: Tables 7 to 9 provide a quantitative analysis

of the experimental results for different modules on the ChestX-ray11
and TCMTD datasets, respectively. In Table 7, for the ChestX-ray11
dataset, compared with the Baseline and Models 1 to 8, CTransCNN
achieve AUC improvements of 2.57%, 2.44%, 0.51%, 2.03%, 2.15%,
2.29%, 2.45%, 1.79% and 1.18%. In Table 8, for the TCMTD dataset,
compared with the Baseline and Models 1 to 8, CTransCNN achieve
AUC improvements of 5.40%, 5.27%, 4.66%, 3.41%, 3.70%, 3.23%,
2.68%, 1.90% and 1.72%. In Table 9, compared with the baseline, the
mAP, CF1 and OF1 of the TCMTD were improved by 4.20%, 4.03% and
1.59%, respectively.

Model 1 showed some validity compared to the Baseline, indicating
the potential of the MMAEF without the MSS. Model 2 compared
with Baseline, and Model 7 compared with Model 5, validating the
superiority of rep_method in MBR. Model 4 compared with Baseline,
and Model 5 compared with Model 1, demonstrating the validity of
IIM. Model 8 compared with Model 6, and CTransCNN compared with
Model 7, validating the superiority of the MSS block in the MMAEF. The
proposed CTransCNN achieves the best classification results through
a good combination of several modules. As can be seen in Tables 7
to 9, each module played a role, confirming the effectiveness of these
modules.

Qualitative analysis: Figs. 13 and 14 present the pathological
labels and corresponding probability scores for the Baseline and CTran-
sCNN models on the ChestX-ray11 and TCMTD, respectively. The exam-
ple images and their respective labels in the ChestX-ray11 and TCMTD
have one or more labels assigned to each image.

For the ChestX-ray11 dataset, comparing the predicted probabilities
of the Baseline and CTransCNN models reveals some differences in
various categories. For example, referring to Fig. 13, in the second row
and first column, the Baseline model exhibits a relatively low prediction
probability for the category ETT-Normal (0.2424). Conversely, in the
second row and second column, it demonstrates a higher prediction
probability for the same category (0.9971). In contrast, the CTran-
sCNN model assigns prediction probabilities of 0.9910 and 1 to these
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Table 7
Comparison of AUC values (%) for our different models in our system on the ChestX-ray11 dataset. The best results are shown in bold.

Network Baseline Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 CTransCNN (ours)

ETT-Abnormal 84.69 91.44 86.98 89.80 88.47 91.77 77.34 93.88 88.91 90.82
ETT-Borderline 89.32 86.06 84.11 89.62 86.88 88.22 84.33 90.55 88.91 88.93
ETT-Normal 97.68 97.23 97.65 97.38 97.68 97.21 97.64 97.46 97.53 97.80

NGT-Abnormal 78.91 76.40 84.50 78.00 80.66 78.63 82.61 79.15 83.31 83.42
NGT-Borderline 78.47 78.91 83.49 80.08 78.18 77.60 81.57 77.15 78.06 81.32
NGT-Incompletely Imaged 93.33 92.63 93.58 93.43 92.94 93.19 92.61 93.03 92.70 94.53
NGT-Normal 91.87 91.34 91.41 90.65 91.41 91.76 91.14 91.22 91.72 92.24

CVC-Abnormal 60.36 63.56 64.58 63.50 61.84 62.31 63.72 61.33 65.20 64.59
CVC-Borderline 58.10 58.80 62.17 58.65 58.13 58.38 59.96 59.74 60.11 61.90
CVC-Normal 58.29 58.50 64.09 58.01 59.33 57.14 61.11 58.43 59.67 63.32

Swan Ganz Catheter Present 97.75 95.31 98.87 95.62 97.92 95.71 98.13 95.44 98.01 98.19

Mean 80.80 80.93 82.86 81.34 81.22 81.08 80.92 81.58 82.19 83.37
Table 8
Comparison of AUC values (%) for our different models in our system on the TCMTD dataset. The best results are shown in bold.

Network Qixu Qiyu Shire Tanshi Tebing Xueyu Yinxu Mean

Baseline 80.33 88.31 82.29 77.27 80.53 83.67 75.72 81.16
Model 1 75.86 78.82 81.47 79.12 94.55 81.61 77.55 81.29
Model 2 81.97 81.18 85.24 82.31 79.70 85.36 77.49 81.90
Model 3 81.08 77.82 84.14 82.07 89.27 87.86 79.76 83.15
Model 4 81.14 81.24 78.70 78.69 96.20 85.78 78.21 82.86
Model 5 80.08 84.79 82.32 76.37 96.04 84.68 79.02 83.33
Model 6 79.28 84.11 88.72 83.67 89.11 84.39 77.87 83.88
Model 7 83.94 86.06 85.02 84.10 86.96 86.16 80.33 84.66
Model 8 80.39 82.44 86.82 85.00 91.58 85.08 82.54 84.84
CTransCNN (ours) 83.93 87.55 87.96 86.53 91.91 85.36 82.67 86.56
Table 9
Classification performance (mean±standard deviation) of our different models in our system on the TCMTD. The best results are shown in bold.

Network mAP (%) CP (%) CR (%) CF1 (%) OP (%) OR (%) OF1 (%)

Baseline 63.47 ± 0.76 58.59 ± 2.31 62.15 ± 0.87 60.29 ± 1.27 78.15 ± 1.22 87.43 ± 1.12 82.53 ± 1.15
Model 1 63.92 ± 1.53 56.62 ± 2.59 64.16 ± 2.21 60.07 ± 0.87 76.20 ± 1.27 89.05 ± 1.16 82.11 ± 0.51
Model 2 63.73 ± 3.10 57.49 ± 4.69 63.68 ± 1.59 60.35 ± 3.00 77.16 ± 2.75 88.87 ± 1.39 82.57 ± 1.74
Model 3 64.92 ± 1.39 57.66 ± 0.79 64.02 ± 0.99 60.66 ± 0.40 76.94 ± 0.46 88.94 ± 1.28 82.50 ± 0.65
Model 4 65.77 ± 1.54 60.49 ± 2.89 63.90 ± 1.01 62.10 ± 1.43 78.30 ± 1.08 89.17 ± 0.59 83.38 ± 0.70
Model 5 65.09 ± 1.56 59.62 ± 2.67 63.37 ± 3.07 61.33 ± 1.34 78.10 ± 1.41 88.38 ± 1.80 82.90 ± 0.75
Model 6 65.86 ± 1.73 58.64 ± 1.77 65.52 ± 1.14 61.88 ± 1.39 77.82 ± 0.88 90.49 ± 0.95 83.68 ± 0.88
Model 7 65.22 ± 2.47 58.05 ± 1.28 64.68 ± 1.25 61.17 ± 0.41 76.13 ± 1.23 89.87 ± 0.78 82.42 ± 0.73
Model 8 67.27 ± 1.35 60.87 ± 1.27 65.35 ± 1.34 63.02 ± 0.89 77.97 ± 0.49 90.38 ± 0.52 83.71 ± 0.50
CTransCNN(ours) 67.67 ± 1.48 63.31 ± 4.55 65.42 ± 2.44 64.32 ± 3.46 79.51 ± 1.05 89.31 ± 0.44 84.12 ± 0.67
respective samples. This shows that the CTransCNN model can allevi-
ate the label imbalance problem to a certain extent. The CTransCNN
model exhibits higher prediction probabilities compared to the Baseline
model, particularly in the ETT-Normal and NGT-Incompletely Imaged
categories. This suggests that the CTransCNN model performs better in
general and is more accurate in these categories.

In the TCMTD, the CTransCNN outperforms the Baseline in recog-
nizing the ‘Qixu’ and ‘Tanshi’ constitutions while showing similar or
slightly improved performance in the ‘Shire’ and ‘Xueyu’ constitutions.
In the Baseline, for the ‘Qixu’ constitution, the predicted probability
score for this label is close to 1, as evident in the third and eighth
columns of Fig. 14. This suggests that the Baseline model tends to
prioritize the ‘Qixu’ constitution over other categories. On the other
hand, the CTransCNN does not exhibit this bias. In the case of CTran-
sCNN, specific constitution types yield highly certain prediction results.
Here, probability scores for corresponding labels are nearly 1, while
scores for other labels approach 0. For example, in the CTransCNN, the
probability scores for the Shire and ‘Tanshi’ constitutions are close to
1, while the scores for other labels are close to 0.

5. Conclusion

The hybrid CNN and transformer architecture for multilabel image
classification (CTransCNN) has demonstrated remarkable performance
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on public datasets (such as ChestX-ray11 and NIH ChestX-ray14), as
well as on a private TCMTD multilabel classification dataset. Nonethe-
less, there are two noteworthy limitations: (i) As indicated by the
ablation experiments carried out on the ChestX-ray11 and TCMTD
datasets in Section 4.7, the capability of CTransCNN to handle label
dependencies might require further improvement. This suggests that
when dealing with numerous multilabel categories, fine-tuning the
model may be necessary to achieve high accuracy. (ii) The operational
speed of the CTransCNN model could potentially face compromises
when deployed on specific portable devices.

In future research, to enhance data diversity, we will focus on
generating high-resolution medical images. Additionally, due to the
adoption of a hybrid CNN and transformer structure, there has been
a certain increase in the model’s computational complexity. Therefore,
in our upcoming studies, we will prioritize investigating methods to
maintain the multilabel image classification performance while making
the proposed model more lightweight. This would render it suitable
for deployment on mobile devices, assisting doctors in diagnosis and
driving advancements in the field of medicine. Simultaneously, the
application of computer-aided diagnosis systems in clinics reduces
the workload of doctors to a certain extent and improves diagnostic
efficiency [37–39].

In this paper, we introduce the novel CTransCNN model, which inte-
grates image representation features with correlations between medical
image labels. By fusing local features and global representations, we

capture and explore correlations between labels. We utilize the label
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Fig. 13. Examples of the recognition results on the ChestX-ray11 dataset. This presents 11 predicted pathological labels along with their corresponding probability scores. The
ground true labels are highlighted in red for emphasis.
Fig. 14. Example of recognition results for the TCMTD. This shows 7 predicted pathological labels and their respective probability scores. True labels are highlighted in red to
draw attention. Due to the limitation of sample collection, the ‘Pinghe’ and ‘Yangxu’ conditions of the nine TCM constitutions are not shown.
embedding and the MSS block of the MMAEF to investigate the hidden
connections among disease complications and label differences, while
the MBR module is employed to optimize the model and effectively
reduce the number of parameters. Furthermore, the information inter-
action modules, specifically the C2T module and T2C module, facilitate
feature transfer between the two branches and introduce nonlinearity.
These modules play a crucial role in achieving successful multilabel
image classification tasks. Experimental results demonstrate that the
proposed CTransCNN exhibits heightened efficacy in discerning mul-
tilabel images and extracting more intricate information. It achieves
superior results across the metrics evaluated on the three investi-
gated datasets. Collectively, these findings underscore the network’s
exceptional performance in the realm of medical multilabel image
classification, with strong generalization ability that can be applied to
other medical multilabel image classification tasks.
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